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Abstract

The momentum transfer across fluid interfaces in multi-phase flow leads to a
non-negligible viscous coupling effect. In this study, we use the lattice Boltz-
mann method (LBM) as a direct simulator to solve the three-phase flow at
pore scale. The viscous coupling effects are investigated for various fluid
configurations in simple pore geometries with different conditions in terms
of saturation, wettability and viscosity ratio. It is found that the viscous
coupling effect can be significant for certain configurations. A parametric
modification factor for conventional three-phase conductance model is then
proposed to estimate the viscous coupling effect. The modification factor
as a function of viscosity ratios can be easily incorporated into existing pore
network model (PNM) to eliminate errors from viscous coupling effect. More-
over, an elegant approach using machine learning technique is proposed to
predict the multi-phase permeability by a trained Artificial Neural Network
(ANN) from the direct simulation database. Such data-driven approach can
be extended to develop a more sophisticated PNM for a better prediction of
transport properties taking account of the viscous coupling effects.
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1. Introduction

The pore-scale behavior of multiphase flow in porous media is essential
for many applications, including oil recovery, carbon dioxide storage, and fuel
cell optimization [1]. The three-phase flow behavior is of great importance
in petroleum engineering due to the fact that many enhanced oil recovery
(EOR) processes such as water-alternating-gas injection, steamflooding, etc.
rely on the complicated phenomena of three-phase systems (oil, water and
gas).

Modeling such multiphase flow at the porous scale is required to inves-
tigate detailed displacement mechanisms and transport behaviors. Various
pore scale models have been developed to predict constitutive properties such
as the relationship between permeability and the fluid saturation and the re-
lationship between capillary pressure and the saturation[1]. The pore scale
models can be categorized as indirect and direct methods. In the indirect
method, the pore spaces are represented by simple sphere or cube geometries
which are connected by throats with idealized shapes[2, 3]. Pore Network
Modeling (PNM)[4, 5, 6, 3] is a typical indirect method which solves sim-
plified transport equations on idealized pore geometries. Several algorithms
were proposed to generate proxy pore-network models for 3D pore structure
reconstructed from computed tomography images of reservoir rocks[7, 8].
Pore-network models have been used as a popular tool because of their effi-
ciency and ability to quickly estimate transport properties such as the relative
permeability which is extremely time consuming to measure experimentally.
Patzek et al. [9] successfully simulated drainage and imbibition processes in
pore-network models to predict multiphase flow properties. Three-phase pore
network modeling has also been developed decades ago[10, 11, 12]. The pre-
dictive capabilities of network models have improved such that they can also
be used to calculate three-phase relative permeability [13, 14]. The limitation
of pore-network modeling resided in the inaccuracy of empirical models and
the extraction of the pore spaces. Due to such simplification of flow processes
and pore-space geometry, some important phenomena such as viscous cou-
pling has been neglected[15, 16, 17]. The viscous coupling effect is usually
important as it influences the prediction accuracy of relative permeability
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curves [18, 16, 17]. The experimental data also showed the importance of the
viscous coupling during three-phase flow in porous media [19, 20]. Dehghan-
pour et al. [19] measured the relative permeabilites of three-phase flow, and
the observed flow coupling effect between water and oil is even stronger in
three-phase flow than two-phase flow.

On the other hand, the use of direct methods implies that we solve the
physical governing equations on the exact realistic geometry of the porous
media at the pore scale. Therefore, it is possible to accurately capture the
missing physical phenomena in PNM if the correct governing equations are
selected and solved properly. Numerical schemes such as finite element [21,
22], finite volume[23, 24, 25], and lattice Boltzmann methods (LBM) [26,
27, 28, 29, 30, 31, 32, 33, 34, 35] have been used for the direct simulations.
The LBM is the most popular method for capturing the multiphase fluid
transport in porous media because of its simplicity in treating complex pore
geometry coupled with interfacial phenomena and thermodynamics[36, 37,
27, 38, 39, 29, 40, 32]. However, the LBM as well as other direct simulation
approach are extremely computationally expensive. This will cause some
difficulties to compute properties at large REV (representative elementary
volume) sizes of rock samples at the mm to cm scale. Parallel computation
techniques have been comprehensively used to improve the computational
efficiency and scalability [41, 42, 43]. However, such simulations still require
large computational resources such as super computers. As a more practical
and applicable solution, the combination of direct numerical simulation and
pore-network modeling is considered to be a good approach for multiphase
flow properties prediction.

In this work, we developed an improved conductance model for the PNM
using data derived from direct pore-scale LBM simulations. The improved
model is proposed to incorporate important viscous coupling effects for mul-
tiphase flow conditions. The viscous coupling effects, which are neglected
in PNMs, have been proven to have a substantial influence on multiphase
flow processes. [44, 36, 16, 17]. Li et al. [44] found that the interfacial area
between fluids strongly affects the permeability, indicating that the common
extension of Darcy’s Law cannot capture flow properties accurately. Huang
and Lu [36] investigated viscous coupling effects by simulating co- and coun-
tercurrent steady-state two-phase flow and found that viscous coupling effects
are strongly related to the saturation distribution. Xie et al. [16] proposed an
improved empirical function by introducing a correction factor to include the
viscous coupling effect into PNM and achieved better predictions of relative

3



permeability. Shams et al. [17] presented a simple parametric model for the
hydraulic conductance as a function of the geometry and viscosity ratio to
account for viscous coupling effects. However, most of all these models are de-
veloped for two-phase flow frameworks. Regarding the conductance model of
the three-phase flow, Al-Futaisi and Patzek [45] used a finite-element method
to solve the three-phase creeping flow in angular capillaries and adopted a re-
gression method to model hydraulic conductance. However, they ignored the
continuity conditions of velocity and shear stress along the interfaces, and a
prescribed interface shape is required. To consider the momentum transfer at
the interface, we use the LBM to simulate three-phase flow at the pore scale
with various geometric parameters and viscosity ratios, because LBM is able
to naturally satisfy the continuity conditions of velocity and shear stress and
is more flexible in handling the contact angles. The dependence of viscous
coupling effects on these parameters is then investigated. Furthermore, an
improved empirical correlation for the conductance is developed by introduc-
ing a modification factor as a function of viscosity ratio in the conventional
three-phase conductance model [46] incorporating the viscous coupling ef-
fect. Finally, machine learning techniques have been used to predict the
permeability of three-phase flow considering the viscous coupling effect in
pore throat by a trained Artificial Neural Network (ANN). We use the LB
direction simulations to generate a database with a set of input parameters
including the viscosity ratios for training. These two newly-proposed models
can be incorporated into PNM for a better prediction of transport properties
with the consideration of viscous coupling effects.

2. Methodology

2.1. Empirical equations of pore-network model

In pore-network models, the conductance ga is the key parameter to com-
pute the absolute and relative permeability [15]. Using the conductance ga,
the local flow rate qij,a (Fig. 1) of the phase a between two connected pores
i and j can be given by Darcy’s law (Fig. 1):

qij,a = gij,a∇Pij (1)

where ∇Pij is the pressure gradient of fluid a between adjacent pores i and
j (Fig. 1). Since the exact analytic solution for conductance is generally
unknown, several empirical expressions have been developed for different
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Figure 1: Pore-network model

fluid configurations and different pore geometries [46]. Depending on the
number of phases coexisting in the pore, the conductance ga is determined
accordingly. The single-phase conductance is given by

g = λ
A2G

µ
(2)

in which, parameter λ is 0.5, 0.6 and 0.5623 for circular, triangular and square
elements respectively [16]. G is the shape factor, µ is the dynamic viscosity
and A is the cross-sectional area.

For two-phase flow, the conductance of each phase must be calculated
depending on the fluid occupation. For fluids occupying the corner and layer
area, Valvatne and Blunt [15] developed empirical expressions as

gc = C
A2

cGc

µc

(3)

gl =
b40gl
µl

(4)

where subscripts c and l represent the corner and layer configurations re-
spectively. Ac is the area of the corner phase and parameters C and Gc are
determined by the corner fluid geometry, while b0 and gl are related to the
layer fluid geometry.

For three-phase flow, Hui and Blunt [11] proposed the following expres-
sions to compute the conductance of wetting (corner) and spreading (sand-
wiched) layers for a three phase coexisting pore corner (Fig. 2). The con-
ductance of the corner phase can be estimated by:

gc =
A2

c(1− sinα)2(ϕ2 cos θ − ϕ1)ϕ
2
3

12µ sin2 α(1− ϕ3)2(ϕ2 + fϕ1)2
θI ≤

π

2
− α (5)
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Figure 2: A sandwich corner of the three-phase system

gc =
A2

c tanα(1− sinα)2ϕ2
3

12µ sin2 α(1− ϕ3)(1 + fϕ3)2
θI >

π

2
− α (6)

ϕ1 = (
π

2
− α− θ) (7)

ϕ2 = cotα cos θ − sin θ (8)

ϕ3 = (
π

2
− α) tanα (9)

where, θ = θI and α is the corner angle. The conductance of the sandwiched
phase can be estimated by:

gl =
A3

1(1− sinα)2 tanαϕ2
3

12µAc sin
2 α(1− ϕ3)


1 + f1ϕ3 − (1− f2ϕ3)


A2

Acl

2 (10)

where, the parameters A1 and A2 are the areas of sandwiched phase and cor-
ner phase, respectively. Acl is a summation of areas of corner and sandwiched
phase.

The empirical equation of conductance for two-phase flow (Eq. (3) and
Eq. (4)) completely neglect the viscous coupling which means flow in each
phase is independent of the other phase. Xie et al. [16] proposed a modifica-
tion factor correcting the original empirical equations to include the viscous
coupling effect. Here, in the case of three-phase flow, there is a parameter
f in Eq.(6) which implicitly reflects the viscous coupling effect between each
phase. f = 1 represents a no-flow boundary condition (completely neglect-
ing the viscous coupling effect), while f = 0 represents a free-slip boundary
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condition. No-flow boundary condition means that the interface is treated
as a solid boundary and the velocity of each phase at the interface is forced
to be zero (no-slip). Free-slip boundary condition indicates that the inter-
face is treated as a perfectly lubricated boundary (fluid can slip freely at
the interface). Both of these two conditions are unrealistic, because con-
tinuity of velocity and shear stress along the interface must be satisfied to
consider the momentum exchange at the interface. For the equation of the
sandwiched phase’s conductance (Eq. (10)), two parameters f1 and f2 are
involved because there are two interfaces: layer-center interface and corner-
layer interface. To quantify the viscous coupling effect, instead of using the
constant value for the parameters f , f1 and f2, we try to develop a function
of viscosities of the three phases by determining the values of f , f1 and f2 in
order to improve the accuracy of empirical equations.

2.2. Direct pore-scale simulation method for three-phase flow

To develop an improved conductance model, we use direct pore-scale
simulation method to provide the details of three-phase flow. Then we could
derive similar modification factors [16] from the detailed direct numerical
simulation results. Here, we adopt a color-gradient three-phase LB model
[38, 29, 47] as the direct pore-scale flow solver. In this method, the three-
phase flow is solved in an integrated manner, and the shape of the interfaces
is determined by the fundamental physical parameters (e.g. wettability and
surface tension). In LBM, particle distribution functions (PDF) fk

i (x, t) are
introduced to represent three different fluids where i and k denote the velocity
direction and phase respectively. The evolution of fk

i (x, t) is governed by the
following LB equation:

fk
i (x+ eiδt, t+ δt) = fk

i (x, t) + Ωk
i (x, t) (11)

where ei is the lattice velocity in the ith direction, δt is the time step, and
Ωk

i is the collision operator:

Ωk
i =


Ωk

i

(3) 
Ωk

i

(1)
+

Ωk

i

(2)
(12)

where

Ωk

i

(1)
is the single-phase collision operator,


Ωk

i

(2)
is the multiphase

collision operator for perturbation, which generates interfacial tensions, and
Ωk

i

(3)
is the multiphase collision operator for the phase segregation. Those

collision operators are given as:
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Ωk

i

(1) 
fk
i


= fk

i −M−1SM

fk
i − fk,eq

i


(13)


Ωk

i

(2) 
fk
i


= fk

i +


l,l ∕=k

Akl

2
|Gkl|


Wi

(Gkl · ei)2

|Gkl|2
− Bi


(14)


Ωk

i

(3) 
fk
i


=

ρk
ρ
f ∗
i +



i,k ∕=k

βkl
ρkρl
ρ2

cos

ϕkl
i


f eq
i (ρ, 0) (15)

To improve the numerical stability and remove the uncertainty due to
viscosity-dependence [48], the multiple-relaxation-time (MRT) operator [49]

of the single-phase LB model is adopted here as the first sub-operator

Ωk

i

(1)

. The M matrix transforms the particle distributions into moment space
which is given by Tolke et al. [50], and then distribution functions are re-
laxed towards a local equilibrium f eq

i with a diagonal matrix of relaxation
coefficients S. The equilibrium f eq

i is a function of density and velocity,
which can be found in [51, 29]. The relaxation coefficients S are determined
according to the fluid’s kinematic viscosity ν and numerical stability consid-
erations [52]. In Eq .(14), Wi is the weights depending on the lattice type
and Bi is the parameter related to the lattice speed. In this paper, we choose
D3Q19 (three-dimensional 19-velocity) lattice with B0 = −1/3, W0 = 1/3,
W1−6 = B1−6 = 1/18, and W7−18 = B7−18 = 1/36 [53].

In the second perturbation operator

Ωk

i

(2) 
fk
i


, Akl is related to the

interfacial tension between k− l fluid interfaces. Gkl is the color gradient in-
dicating the normal direction of k− l fluid interfaces, which can be calculated
from the density field as [47]:

Gkl =
ρl
ρ
∇


ρk
ρ


− ρk

ρ
∇


ρl
ρ


(16)

In the above equation, the gradient operator for an arbitrary variable φ
is approximated by [53, 34, 54] :

∇φ (x, t) =
3

c2



i

wieiφ (x+ eiδt, t) (17)

To promote phase segregation and maintain a sharp interface [55], a third

recoloring operator

Ωk

i

(3) 
fk
i


has to be applied. In the recolor operator, f ∗

i

denotes the post-perturbation value of the total particle distribution function,
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and βkl is a parameter [56] controlling the thickness of the k − l interface
taking a value of between 0 and 1.The βkl is set to be 0.8 for all the simulations
in this study, and the interface thickness is around 5 lattices. When the
viscosities of the fluids are different, an interpolation is applied to calculate
the viscosities in the interfacial region [47]. As a result, the smooth transition
of interfacial viscosities can be obtained and the continuity conditions of
velocity and shear stress at the interface are naturally ensured. ϕkl

i indicates
the angle between the color gradient Gkl and the lattice direction vector
ei. The f eq

i (ρ, 0) is the equilibrium function calculated with a zero velocity.
Finally, the macroscopic flow properties including density ρ and velocity u
can be calculated as :

ρ =


k

ρk, ρk =


i

fk
i , ρu =



i



k

fk
i ei (18)

2.3. Validation

2.3.1. Three-phase co-current flow between parallel plates

For immiscible three-phase flows in porous media, a typical scenario is
that the wetting fluid attaches and moves along the solid surface forming
a wetting layer. Therefore, we first investigated a layered three-phase co-
current flow in a straight channel (Fig. 3) to validate the numerical method
and confirm the viscous coupling effects. The fluid 1 flows in the center,
while fluid 3 flows along the upper and lower plates. The sandwiched fluid
2 lays in between fluid 1 and fluid 3. The distance between the upper and
lower plates is 2H. The coordinates of the interface between fluid 1 and 2
are ±a, while the coordinates of the interface between fluid 2 and 3 are ±b.
The governing equations of fluid flow for each phase are given by

µl∇2ul = ∇Pl, (19)

where subscript l represents the different phase (l = 1, 2, 3), µ is the viscosity
and P is the pressure. The ul(y) are the velocities of each phase. The
boundary conditions are

u1|y=a = u2|y=a , u2|y=b = u3|y=b , u3|y=H = 0 (20)

∂u1

∂y


y=0

= 0, µ1
∂u1

∂y


y=a

= µ2
∂u2

∂y


y=a

, µ2
∂u2

∂y


y=b

= µ3
∂u3

∂y


y=b

(21)
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The theoretical cross-sectional velocity distribution can be obtained by solv-
ing the above equations with the boundary conditions:

0 ≤ y < a : u1 = A1y
2 + C1

a ≤ y < b : u2 = A2y
2 +B2y + C2

b ≤ y ≤ H : u3 = A3y
2 +B3y + C3

(22)

where

A1 = 0.5∇P1/µ1, A2 = 0.5∇P2/µ2, A3 = 0.5∇P3/µ3, (23)

B2 = −2A2a+ 2
µ1

µ2

A1a, (24)

B3 = −2A3b+
µ2

µ3

(2A2b+B2), (25)

C3 = −A3H
2 − B3H, (26)

C2 = (A3 − A2)b
2 + (B3 − B2)b+ C3, (27)

C1 = (A2 − A1)a
2 +B2b+ C2, (28)

The conductance of the three fluids can be calculated from the velocity
distribution. It is clear that the velocity profile of each phase is correlated
to the viscosity ratio (Eq. 22), which confirms the importance of the viscous
coupling effect. The analytical solution is usually difficult to obtain for other
types of complex configurations, therefore direct simulation by lattice Boltz-
mann multiphase model is adopted to address the viscous coupling effect for
those complex configurations. Numerical simulation tests are performed by
simulating this layered three-phase co-current flow. The computation do-
main is set as 100× 101× 20 lattice sites. Periodic boundary conditions are
applied on the x and z directions. Non-slip boundary conditions at the top
and bottom solid wall in y direction are implemented by using the bounce-
back scheme. For simplicity, the densities of the three phases are set to be
identical. The surface tension σ is chosen to be 0.01 in lattice unit. A uni-
form pressure gradient along the flow direction (∇P1 = ∇P2 = ∇P3 = ∇P )
is applied on the whole domain. In our simulation, a body force of 10−6 in
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Figure 3: Concurrent immiscible three-phase flow in a channel.

Figure 4: Comparison of cross-sectional velocity profile between theoretical solution (black
line) and simulation results (blue dot) for the three-phase co-current flow with different
viscosity ratio: (a) case I with µ1 : µ2 : µ3 = 1 : 2 : 4; (b) case II with µ1 : µ2 : µ3 = 1 : 5 :
25

lattice units is applied to mimic the pressure gradient. Two cases with dif-
ferent viscosity ratios are considered here: case I with µ1 : µ2 : µ3 = 1 : 2 : 4
and case II with µ1 : µ2 : µ3 = 1 : 5 : 25 . After the systems reach the steady
state, the velocity profiles along y axes are shown in Fig. 4. For case I, our
simulation results showed a good agreement with the theoretical solution,
while for case II the peak velocity of center-layer phase obtained from LBM
is about 4.3% lower than that of analytical one. This small discrepancy may
due to the large viscosity ratio. It has been reported that high viscosity ratio
decreases the accuracy of the model [57]. These validation cases confirm the
capability of our direct flow solver to account for the viscous coupling effect.

2.3.2. Viscous coupling effect on velocity distribution of triangular pore throat

To investigate the effect of the center layer’s viscosity on the velocity
distribution in the cross section of triangular pore throat, we performed
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Figure 5: Three-phase fluid configurations (different color indicates different phases) in
three types of cross-section geometry : (a) equilateral triangle, (b) square and (c) right
triangle

three-phase flow simulation on the fluid configuration illustrated in Fig.5(a).
The triangle side length is 90 lattice sites. We adjusted the viscosity of
the center phase νcen, while keeping the viscosities of the other two phases
to an identical constant value νI . Four cases with different viscosity ratios
νI/νcen = 1, 1/3, 1/5, and 1/10 are considered here. The boundary con-
ditions were set as the same with the above validation case. In Fig.6, we
plotted velocity profiles along the center line of the cross-sectional trian-
gle for the cases with different viscosity ratios. Indeed, the condition with
νI/νcen = 1 : 1 is equivalent with the situation of single-phase flow. It can
be seen that the velocity of the center phase decreases substantially with the
increase of its viscosity. As a result, the low-velocity center phase will drag
the layer fluid through the viscous shear force at the interface, which reduces
the permeability of the corner phase. These results again demonstrated the
importance of the viscous coupling effect. The impact of viscosity variation
of the center phase on the corner phase’s velocities is relatively small. This is
because the shear force from the center phase has to be transmitted through
the middle layer phase to the corner phase in this sandwich configuration, and
the corner phase’s velocities are mainly determined by the non-slip condition
of the stationary wall.

3. Results and discussion

In this section, we use the three-phase LBM model as a direct simulator
to further examine the impact of the viscous coupling effect on the flow
properties inside the pore throats of PNM with various configurations. In
PNM, the cross-section of individual pore throats are usually modeled as
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Figure 6: Fluid velocities along the triangle center line with different viscosity ratio con-
ditions νI/νcen

triangles and polygons [46]. Here, in addition to the equilateral triangle,
the often-used square and right triangle are also considered in this study.
The fluid configuration in a pore/throat corner of these three geometries are
illustrated in Fig. 5. The square side length has 190 lattice sites. The right
triangle is composed of 30◦ and 60◦ angles with the shortest side which has
a length of 210 lattice sites. The length of the pore throat along the flow
direction is 20 lattice sites. Bounce-back boundary conditions are applied on
all the walls, and the periodic boundary conditions are applied on the flow
direction. All the simulations used the same pressure gradient meaning the
same magnitude of driving force. The driving force is set to be low enough to
achieve a small capillary number ∼ 1.0×10−4 (Ca = µU/σ, where U denotes
the mean velocity), and the direction of interfacial tension force is always
orthogonal to the direction of pressure gradient in our scenario. Therefore,
the interfaces are very stable in our simulations. The empirical equation
(Eq. (6)) indicates that the conductance depends on the parameters such
as wettability (contact angle), corner half angle, saturation of each phase
(areas), and the viscosity ratios. The corner phase conductance changes
under various conditions (combination of different viscosity ratio, contact
angles, saturations and fluid configurations) have been studied to quantify
those parameters’ impacts on viscous coupling effects. The other parameters
including density ratio and interfacial tension ratio are set to be unity for
simplicity.
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3.1. Effect of pore throat geometries
Three geometries (Fig.5) are considered for the shape of cross-section of

pore throats. These geometries contain different corner angles. The wetta-
bility was set to be neutral for all the cases here, which means the contact
angles θI = θII = 90◦. To investigate the viscous coupling effect on the con-
ductance of corner phase, we kept the viscosity of corner phase as a constant
while adjusting the viscosities of the layer and center phases with differ-
ent sets of viscosity ratio (νcor : νlay : νcen = 1 : 1 : 1 ∼ 1 : 10 : 1 and
νcor : νlay : νcen = 1 : 1 : 1 ∼ 1 : 1 : 10). First, we individually adjusted
the viscosity of the layer or center phase while fixing the other two phases’
viscosity.

Increase of the viscosity of layer phase leads to a decrease of conductance
of the corner phase (red lines in Fig. 7). The same trend can be observed
for the results of center phase’s viscosity adjustment (yellow lines in Fig. 7).
However, for all the cases, the layer phase viscosity change has an obvious
larger impact on the corner phase’s flow rate compared with the center layer
viscosity change (the red curve is always below yellow curve in Fig. 7 and
has a steeper gradient). Since the layer phase is adjacent to the corner phase,
the shear force change caused by the viscosity increase of the layer phase has
a direct impact on the corner phase. For the square geometry, the viscosities
of center phase and layer phase have a similar effect (Fig. 7(b)) on the corner
phase’s conductance. (the difference between the red curve and yellow curve
of 90 degree corner of square in Fig. 7(c) is smaller than other cases with
small corner angles). On the other hand, it is found that there is no strong
influence of center phase’s viscosity change on the corner phase’s conductance
when the corner angle is small (yellow curve is almost horizontal in Fig. 7(c)).
The magnitude of the total shear force of center phase transmitting to the
corner fluid depends on the area of interface. Larger corner angle results in
a wider area of interface. Therefore, the effect of the center phase viscosity
is much greater in the 90 degree corner, while it is almost negligible in 30
degree corner. In the case of the 30 degree corner, the ratio of interfacial
area to the whole fluid boundary is low, therefore the shear force between
center phase and the corner phase has a smaller contribution to the flow rate
compared to the wall shear force from the no-slip boundary condition.

We also estimated the flow rate for the conductance of corner phase using
the empirical equation (Eq.6). Recall that the parameter f implicitly reflects
the viscosity coupling effect between each phase in the empirical equation
Eq.6 of the conductivity. The f ∈ [0, 1] can be seen as a measurement for
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slip effect at the interface. f = 1 means a no-flow boundary condition,
while f = 0 means a free-slip boundary condition at the interface. Here,
f = 0 corresponds to the case with identical viscosity (viscosity ratio equals
to 1), while f = 1 corresponds to the case with infinite viscosity of layer
and center phase (viscosity ratio equals to 0). The possible results of corner
phase’s flow rate calculated by the conventional empirical equation (Eq.6)
with the parameter f treated as a variable in the range of [0, 1] are plotted in
Fig.7 as black line. It is seen that the empirical equation underestimated the
corner phase conductance for all cases compared with our results of direct
simulations. Therefore, the original empirical equation cannot capture the
accurate viscous coupling effect.

To further investigate the relationship between the corner phase’s conduc-
tance and viscosities of the other two phases, we then run 100 simulations
by fixing only the corner phase’s viscosity and adjusting the viscosity of cen-
ter together with that of layer phases with various combinations of viscosity
ratios νcor : νlay : vcen = 1 : 1 : 1 ∼ 1 : 10 : 10. The transition of the
corner phase’s conductance when increasing the viscosities of the other two
phases (Fig.8) shows that the viscous coupling effects of both center and
layer phases are significant for geometries with large corner angles (Fig.8 (a)
and (b)) while the center phase’s viscosity change has only a small impact on
the configuration of small corner angle (Fig.8 (c)). The transition of corner
phase’s conductance shows a difference between the equilateral triangle and
right triangle even if the corner angle is the same (Fig.8 (a) and (d)). There-
fore the shape of cross-section also has an impact on the viscous coupling
effect. A symmetrical cross-section is favorable for the transmission of shear
forces. In the case of right triangle, the center phase’s viscosity has a smaller
influence due to asymmetric shape of cross-section.

3.2. Dependence on contact angle

To investigate the viscous coupling effect under various contact angle
conditions, we adjusted the wettability of the solid wall to create three dif-
ferent configurations with different phase contact angles (case I : θcl = 60◦,
θlb = 90◦; case II : θcl = 135◦, θlb = 135◦; case III : θcl = 90◦, θlb = 135◦).
The subscript cl represents the interface between the corner and layer phase,
and lb denotes the interface between the layer and center (bulk) phase. The
equilibrium configurations of the three phases with different contact angles
are displayed in Fig.9.
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Figure 7: Effect of viscosity ratio on the conductance of corner phase (a) 60 degree corner
of equilateral triangle, (b) 90 degree corner of square, (c) 30 degree corner of right triangle
and (d) 60 degree corner of right triangle
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Figure 8: Transition of corner phase’s conductance when increasing the viscosities of center
phases (y axis) and layer phase(x axis) for different fluid configurations; red color indicates
high flow rate and blue color represents the low flow rate

We independently increased the viscosities of layer phase and center phase
respectively. The simulated conductances of the corner phase with different
sets of viscosity ratio (νcor : νlay : vcen = 1 : 1 : 1 ∼ 1 : 10 : 1 and
νcor : νlay : vcen = 1 : 1 : 1 ∼ 1 : 1 : 10) are shown in Fig. 9. The conductance
of corner phase decreases with the increase of the other phases’ viscosities due
to the viscous coupling effect. The viscosity increase of the layer phase (red
lines in Fig.9) has a greater impact on the corner phase’s conductance than
that of the center phase (yellow lines in Fig.9 ). These two kinds of trends
are consistent with the above observation for the same reason discussed in
section 3.1.

Viscous coupling effect arising from center phase viscosity showed depen-
dence on the contact angle. For case III (θcl = 90◦, θlb = 135◦), the center
phase viscosity change has a negligible effect on corner phase’s conductance,
while the conductance of corner phase decreases faster for case I compared
with case II and III (yellow curves in Fig.9). In case III, the layer phase
forms a biconcave lens shape and the area of the layer phase is smaller com-
pared with case I and II. Such shape results in a lower velocity distribution
and therefore lower shear force. On the other hand, the contact angle has
little influence when changing the layer phase viscosity (three red curves in
Fig.9 almost collapse together). The viscous coupling has to act through the
interface, whose effect is directly related to the length of the interface. The
lengths of the interface between corner and layer phases are almost the same
for three cases. The change of interfacial length caused by the variation of
the corner phase’s contact angle is limited. As a result, only a very small
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impact on the viscous coupling effect can be observed when the contact angle
of corner phase changed.

3.3. Dependence on saturation

To investigate the dependence of the viscosity coupling effect on the satu-
rations of the three phases, configurations with thinner thickness layer phase
(Fig. 10 (b) case II) and smaller area corner phase (Fig. 10 (c) case III) are
constructed based on the original case (Fig.10 (a) case I). The wettability
was set to neutral for all the three phases. The saturations of corner phase
for the three cases are SI

c = SII
c = 0.056, SIII

c = 0.027, and the saturations
of layer phase for the three cases are SI

L = 0.102, SII
L = 0.049, SIII

L = 0.081.
The results again showed that the viscosity change of the layer phase has
an obvious larger impact on the conductance of the corner phase (Fig.10).
Increase of the ratio νlay : νcor up to 10 results in a decrease of 50% for the
corner phase’s conductance, while increasing the ratio νcen : νcor leads to
a decrease of roughly 10%∼20% for the corner phase’s conductance. This
trend is similar to Fig.9 for the same reason that the shear force from layer
directly acts on the corner phase through their shared interface.

The differences of the three curves for different saturation cases are small
(Fig. 10). Note that, the absolute conductance (flow rate) in the empirical
equation (Eq. 6) is related to the value of saturation. Here, we focused on
investigating the viscous coupling effect based on the normalized conductance
ĝ = gi

gb
with gb being the base conductance calculated by using identical

viscosity ratio and gi being the conductance calculated by various viscosity
ratios. The results of normalized conductance showed that the saturation
variation has a small effect on the viscous coupling. For the cases I and II
with the same saturation of corner phase, an increase of the layer phase’s
saturation leads to a slightly bigger impact of viscous coupling effect from
the layer phase. If we further decrease the saturation of the corner phase,
the viscous coupling effect from the layer phase becomes stronger. With
regard to center phase viscosity adjustment, our results of case II showed the
largest viscous coupling effect. Since the shear force from the center phase
has to be transmitted across the layer phase, the thinner layer phase shortens
the distance between the corner phase and center phase in case II. Therefore,
the propagation of the viscous coupling effect from the center phase to corner
phase becomes easier.
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Figure 9: Effect of contact angle on the conductance of corner phase with viscosity chang-
ing; Left shows the configurations for different contact angles: case I (a), case II (b) and
case III (c);

19



Figure 10: Effect of saturation on the conductance of corner phase with viscosity changing;
Left shows the configurations for different saturations: case I (a), case II (b) and case III
(c);
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3.4. Modification factor

The above results show that the viscous coupling effect on predicting the
transport properties is significant. In the original model by Hui and Blunt
[11], the empirical equation is unable to match the results of direct simulation
with a single constant parameter f which is related to the viscous coupling
effect (Fig.8). Here we try to extend the original model by incorporating the
viscous coupling effect extracted from the direction simulations and improve
the predication accuracy.

The results in section 3.2 and 3.3 indicated that viscous coupling effect
was not very sensitive to wettability or saturations, which is agreed with
the finding in the reference [16]. The viscosity ratios has the largest impact
on the conductance. Therefore, we introduce a new function of the two
viscosity ratios M1 = νcor/νlay and M2 = νlay/νcen to account the viscous
coupling effect.

Assuming the parameter f in the empirical equation (Eq.6) to be 0, we
defined a reference value of conductance as:

grc =
A2

c tanα(1− sinα)2ϕ2
3

12µ sin2 α(1− ϕ3)
(29)

Then we propose a new conductance model by correcting the reference value
through a modification factor f v

c (M1,M2) to approach the results of direct
simulations.

gc = grc · f v
c (M1,M2) =

A2
c tanα(1− sinα)2ϕ2

3

12µ sin2 α(1− ϕ3)
· f v

c (M1,M2) (30)

To propose an expression for this function, we use second order polynomial
model expressed by two variables M1 and M2.

f v
c (M1,M2) = acM1 + bcM2 + ccM1M2 + dcM2

1 + ecM2
2 + hc (31)

The six constant parameters ac ∼ hc are determined by a least-squares al-
gorithm to fit with the data from direct simulations f v

c,sim = gc,sim/g
r
c . The

obtained parameters are listed in Table.1. The modification factors calcu-
lated by Eq.31 using the obtained parameters (surfaces in Fig.11) showing a
very good agreement with the simulation results (dots in Fig.11). Therefore,
the proposed new conductance model with this modification factor (Eq. 30)
is able to capture the viscous coupling effects under different viscosity ratio
conditions. Here, the modification factor is considered to be independent to
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the wettability and saturation because the viscous coupling effect was not
very sensitive to these parameters. The proposed modification factor is in-
deed a relative ratio between the conductance predicted under three-phase
condition with viscous coupling effect and that under single-phase state with
free-slip interface condition. The relationship between conductance and wet-
tability as well as saturation is already included in the reference function
(Eq. 29). Therefore, the modification factor scales the conductance in a sim-
ilar manner when the contact angle or saturation changes. This modification
factor may show dependence if the contact angle or saturation is extremely
high or low. However, for most of values of wettability and saturation, such
dependence can be neglected [16].

Based on the same procedure, we propose the modification factor f v
l for

the layer phase’s conductance. The base reference value grl for layer phase’s
conductance without viscous coupling effect is defined from the original equa-
tion (Eq.10) with f1 = f2 = 0:

grl =
A3

1(1− sinα)2 tanαϕ2
3

12µAcl sin
2 α(1− ϕ3)


1−


A2

Acl

2 (32)

Similarly, the layer phase’s conductance can be corrected by the modification
factor f v

l to include viscous coupling effect :

gl = grl · f v
l (M3,M4) (33)

where, viscosity ratios are defined as M3 = νcor/νlay and M4 = νcen/νlay.
Again, the polynomial type of modification function is used:

f v
l (M3,M4) = alM3 + blM4 + clM3M4 + dlM2

3 + elM2
4 + hl (34)

The six constant parameters al ∼ hl obtained by fitting the function to data
from direct simulations using least-squares algorithm are shown in Table.2.
These modification factors can be used to improve the original pore-network
model for a better performance of predicting the transport parameters by
incorporating the viscous coupling effect.

3.5. A general data-driven machine learning model for permeability

The above modification factor is proposed as a correction for the original
empirical equation for conductance. For a practical application, a data-
driven way to predict the multiphases’ permeability considering the viscous
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Figure 11: Modification factor fv
c as a function of viscosity ratios M1 and M2 for different

geometries and surfaces fit to our direct simulation data in circle dots: red and blue color
indicate high and low values respectively
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Figure 12: Modification factor fv
l as a function of viscosity ratios M1 and M2 for different

geometries and surfaces fit to our direct simulation data in circle dots: red and blue color
indicate high and low values respectively
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Table 1: Parameters of modification factor function of corner phase’s conductance for
different fluid configurations

corner ac bc cc dc ec hc

equilateral triangle 60◦ 3.0431 -1.8606 -2.9031 0.8909 0.7065 1.2060
square 90◦ 6.8287 -5.4973 -5.9767 2.7358 1.9370 2.0739

right traingle 30◦ 1.6021 -0.2614 -1.6672 0.1473 0.0634 0.8840
right traingle 60◦ 3.1593 -1.570 -3.3794 0.7843 0.5753 1.5872

Table 2: Parameters of modification factor function of layer phase’s conductance for dif-
ferent fluid configurations

corner al bl cl dl el hl

equilateral triangle 60◦ 1.5041 -0.7247 -2.2332 0.2695 0.3194 1.2433
square 90◦ 2.8318 -1.3588 -3.9132 0.5868 0.5736 1.9658

right triangle 30◦ 0.7893 -0.2457 -0.9183 0.0523 0.1152 0.5173
right triangle 60◦ 1.5044 -0.5770 -2.2305 0.1783 0.2706 1.2676

coupling effect is further proposed. Based on the data obtained from direct
simulations, the machine learning method was adopted to develop a fast and
accurate model for permeability. Machine learning methods provide a func-
tion using a set of neurons and weights to express the relationship between
inputs and outputs [58]. Here, the Levenberg-Marquardt algorithm is used
as the optimizer to train an artificial neural network (ANN) to predict the
permeability (output) based on the properties in terms of three phases’ con-
figuration, throat’s geometry, viscosity ratios, and etc.(inputs). Levenberg-
Marquardt is an iterative algorithm to find the minimum of a loss function
taking the form of a sum of squared errors [59, 60]. This algorithm is an
efficient tool to optimize weights and biases of a neural network approach in
a second-order training speed without having to compute the Hessian matrix
[61, 62, 63]. In this study, we adopted a fully-connected neural network with
one-hidden-layer (Fig. 13). The optimal size of the hidden layer is usually
a prior-unknown variable, therefore two ANN architectures with different
number of nodes (ANN1: 6 nodes; ANN2: 7 nodes) in the hidden layer were
considered here. Both ANNs have 8 input parameters and one output of the
permeability.

We considered 8 input parameters which include corner angle α, contact
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Figure 13: Illustration of the ANN for machine learning to model the permeability with 8
input parameters

angle between corner and layer phases θI , contact angle between layer and
center phases θII , mean distance Dm of the cross area’s shape, saturation of
corner phase Sc, saturation of layer phase Sl, viscosity ratioM1, and viscosity
ratioM2 (Fig. 13). Here the mean distanceDm is obtained by calculating the
average of the Euclidean distance map of the pixel-based cross section [63].
The Euclidean distance of a void space means the distance from the void pixel
to the nearest solid pixel. The mean distance parameter was adopted here
because it reflects the topological feature of cross section’s shape and is highly
correlated with the permeability [63] and the above modification factor also
showed a heavy dependence on the shape of cross section. Training of this
neural network was conducted by using the nftool function in Deep Learning
Toolbox of MATLAB. To train the neural networks, we built a database
composed of 3200 entries using different combinations of input parameters
presented in Section 3.1-3.3 for various situations. We take 70% of them for
training, 15% for validation and 15% for testing. Then the mean squared
error (MSE) and coefficient of determination (R2) are calculated to evaluate
the training performance.

Fig. 14 and 15 showed the relationships between the original data from
direction simulations and predicted results by the ANNs for the permeabili-
ties of corner phase and layer phase, respectively. The results of ANN1 with
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Figure 14: The capability of ANN to predict the permeability of corner phase including
training, evaluation and testing data, (a) ANN1 with 6-node hidden layer, (b) ANN2 with
7-node hidden layer.

Table 3: Learning performance for corner phase’s permeability of the two ANNs in terms
of coefficient of determination (R2) and mean squared error (MSE).

Data set ANN1 MSE ANN1 R2 ANN2 MSE ANN2 R2

Training 1.76111e-3 9.976630-1 2.05180e-4 9.99730e-1
Validating 1.37162e-3 9.98434e-1 2.66466e-4 9.99649e-1
Testing 2.77962e-3 9.96594e-1 2.90566e-4 9.99645e-1

6-node hidden layer is more scattered than that of the ANN2 with 7-node
hidden layer. The learning performance of ANN1 and ANN2 are provided
in Table.3 in terms of mean squared error (MSE) and coefficient of deter-
mination (R2). These results quantitively demonstrated a better prediction
performance of ANN2. The ANN2 with 7-node hidden layer is able to per-
fectly calculate the permeability of multiphase flow in pore throat with the
given 8 input parameter. Further increasing the size of hidden layer may lead
to over-fitting. Therefore, the optimized size of the hidden layer must be 7
nodes for our proposed neural network model. Finally an explicit function (in
supplementary material) can be extracted from this trained neural network
and then coupled into the PNM to improve the accuracy of permeability
calculation by incorporating the advantages of direct simulations with the
viscous coupling effect.
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Figure 15: The capability of ANN to predict the permeability of layer phase including
training, evaluation and testing data, (a) ANN1 with 6-node hidden layer, (b) ANN2 with
7-node hidden layer.

Table 4: Learning performance for layer phase’s permeability of the two ANNs in terms
of coefficient of determination (R2) and mean squared error (MSE).

Data set ANN1 MSE ANN1 R2 ANN2 MSE ANN2 R2

Training 1.07605e-2 9.99245e-1 7.76235e-3 9.99407e-1
Validating 1.67436e-2 9.98678e-1 1.05380e-2 9.99437e-1
Testing 2.02200e-2 9.98578e-1 1.08309e-2 9.99271e-1
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4. Conclusion

In this study, the viscous coupling effects in three-phase flow through
pore throat channels have been studied by using the multiphase LBM direct
simulation under various conditions with different saturations, wettability,
and fluid configurations. The results indicate that the viscous coupling effect
during simultaneous flow of different fluid phases has a significant impact on
the hydraulic conductance of fluid layers occupying the corner areas. This
viscous coupling effect is heavily correlated to the shape of cross-section and
the length of interface across which the momentum transfers. Our direct
simulation results show that the geometric parameters such as corner angle
and the viscosity ratios largely affect the viscous coupling effects. We have
also demonstrated that the conventional empirical equation derived using
free-slip and no-flow boundary fails to capture the correct conductance for
a range of viscosity ratios. A modification factor which is expressed as a
function of viscosity ratios is proposed to correct the original empirical equa-
tion to include the viscous coupling effect. With this modification factor, the
results calculated by the corrected equation agree well with the data from
direct simulations.

We further proposed a more elegant way to predict the permeability of
three-phase flow in pore throat tubes by using the machine learning method.
Two ANNs with different nodes of hidden layer were trained by a database
built from the results of direct simulations using different combinations of
8 inputs including various geometric parameters, wettability and viscosity
ratios. The results showed that the ANN with 7-node hidden layer provide a
perfect capability of estimating the permeabilities with coefficient of deter-
mination (R2) higher than 0.99.

These two proposed new models can be directly incorporated into pore
network modeling for predicting flow transport properties with the viscous
coupling effect for large core-scale model. Though the present study only
considered the straight pore-throat tubes, our approach can be easily ex-
tended to deal with more complicated shape of pore throats. The coupling
of direction simulation and pore-network modeling through this way has a
great potential to improve the accuracy of pore-network modeling by incor-
porating more detailed pore-scale information while still maintaining good
computational efficiency.
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